

 English

 Toggle navigation

 	Docotic.Pdf
	Download
	Help
	Pricing
	Blog
	Support
	About us

	Bit Miracle
	Docotic.Pdf
	Features

Render and print PDF documents in C# and VB.NET

Everybody thinks about Adobe Reader when it comes to reading PDF documents. But what to do if you
are a software developer and want to display PDF documents in your application? You do not want to
ask the user to set up Adobe Reader and open the document there.

You may also need to implement other PDF-related requirements. For example, print PDF documents.
Or generate thumbnails for uploaded PDF documents. Or support PDF editing in your desktop or web
application.

All you need is a PDF library that can render and print PDF documents.

.NET library to view, edit, or print PDF documents

Docotic.Pdf library allows you to display, edit, and print PDF documents in C# and
VB.NET. You can implement any complex PDF rendering flow using three core features.

The first one is the ability to convert PDF to images. You can
implement almost everything based on this feature. From PDF printing to displaying a PDF on
HoloLense or posting a PDF on Instagram. That is possible because images are supported everywhere.

The second key feature is the ability to draw PDF pages on the drawing surface of a
System.Drawing.Graphics. It allows you to render and print PDFs in Windows Forms or WPF
applications. To use this feature, add BitMiracle.Docotic.Pdf.Gdi extension
DLL to your project.

Last but not least is the ability to extract PDF page objects. This feature allows you to build PDF
viewer or PDF editor in your C# or VB.NET application.

You can download the binaries of the library or use its NuGet
package. To try Docotic.Pdf without evaluation mode restrictions, you may get
the free time-limited license key by using the form here.

Print PDF in Windows Forms or WPF application

.NET does not support printing of PDF documents out of the box. You need to transform your PDF
document to an image, an XPS file, or draw it to a System.Drawing.Graphics surface. Then you can
use .NET classes to print the output from within a Windows Forms or a WPF application.

In Windows Forms applications, you can use classes from System.Drawing.Printing namespace. There
are also handy PrintDialog and PrintPreviewDialog classes for building printing UI.

Please note that it is not recommended to use anything from the System.Drawing namespace in macOS
and Linux environments. The macOS and Linux implementations of the System.Drawing are incomplete
and different from the Windows implementation. You might get incorrect and/or inconsistent results
if you use the System.Drawing namespace in macOS and Linux environments.

WPF provides another PrintDialog class but does not provide classes for print preview. Luckily,
WPF allows you to use PrintPreviewDialog class from System.Windows.Forms.dll. Thus, it's easier
to use print classes from System.Windows.Forms and System.Drawing.Printing namespaces in WPF
applications.

Look at the Print PDF in .NET demo application that comes in C# and VB.NET
versions for WinForms and WPF. The application shows how to:

	display a print preview for PDF documents
	print PDF documents to a selected printer
	set up the paper size, the scaling mode, and other print settings

The application uses Docotic.Pdf library, BitMiracle.Docotic.Pdf.Gdi extension
DLL, and print classes from System.Windows.Forms and
System.Drawing.Printing namespaces. You can use its PdfPrintDocument
and PdfPrintHelper classes in your WPF or Windows Forms projects.

The PdfPrintDocument class describes the main printing logic. This class connects Docotic.Pdf
with the System.Drawing.Printing.PrintDocument class. The key method is the
printDocument_PrintPage event handler:

private void printDocument_PrintPage(object sender, PrintPageEventArgs e)
{
 Graphics gr = e.Graphics;

 // Work in points to have consistent units for all contexts:
 // 1. Printer
 // 2. Print preview
 // 3. PDF
 gr.PageUnit = GraphicsUnit.Point;

 if (m_printAction == PrintAction.PrintToPreview)
 {
 gr.Clear(Color.LightGray);
 gr.FillRectangle(Brushes.White, m_printableAreaInPoints);
 gr.IntersectClip(m_printableAreaInPoints);

 gr.TranslateTransform(m_printableAreaInPoints.X, m_printableAreaInPoints.Y);
 }

 PdfPage page = m_pdf.Pages[m_pageIndex];
 PdfSize pageSizeInPoints = getPageSizeInPoints(page);

 if (m_printSize == PrintSize.FitPage)
 {
 float sx = (float)(m_printableAreaInPoints.Width / pageSizeInPoints.Width);
 float sy = (float)(m_printableAreaInPoints.Height / pageSizeInPoints.Height);
 float scaleFactor = Math.Min(sx, sy);

 centerContentInPrintableArea(gr, pageSizeInPoints, scaleFactor);
 gr.ScaleTransform(scaleFactor, scaleFactor);
 }
 else if (m_printSize == PrintSize.ActualSize)
 {
 centerContentInPrintableArea(gr, pageSizeInPoints, 1);
 }

 page.Draw(gr);

 ++m_pageIndex;
 e.HasMorePages = (m_pageIndex <= m_lastPageIndex);
}

First, we set up transformations of the printed page's Graphics object. It's important to respect
the "Fit page" and "Actual size" settings. And we also display the printer's hard margins in the
Print Preview dialog. Then we draw the current PDF page on the Graphics object using
PdfPage.Draw extension method.

The PdfPrintHelper class allows you to use PdfPrintDocument with UI classes for printing. For
example, you can show the print dialog for your PDF document like that:

using (var pdf = new PdfDocument("your_document.pdf"))
 action(pdf, getPrintSize());

public static DialogResult ShowPrintDialog(PdfDocument pdf, PrintSize printSize)
{
 using (var printDialog = new PrintDialog())
 {
 printDialog.AllowSomePages = true;
 printDialog.AllowCurrentPage = true;
 printDialog.AllowSelection = true;

 printDialog.PrinterSettings.MinimumPage = 1;
 printDialog.PrinterSettings.MaximumPage = pdf.PageCount;
 printDialog.PrinterSettings.FromPage = printDialog.PrinterSettings.MinimumPage;
 printDialog.PrinterSettings.ToPage = printDialog.PrinterSettings.MaximumPage;

 var result = printDialog.ShowDialog();
 if (result == DialogResult.OK)
 {
 using (var printDocument = new PdfPrintDocument(pdf, printSize))
 printDocument.Print(printDialog.PrinterSettings);
 }

 return result;
 }
}

That's it. Do the following to implement PDF printing in your Windows Forms or WPF application:

	add PdfPrintDocument, PdfPrintHelper, and PrintSize files from the sample
	add a reference to Docotic.Pdf library
	add a reference to BitMiracle.Docotic.Pdf.Gdi extension DLL
	(WPF only) add references to System.Windows.Forms and System.Drawing assemblies

Print PDF using conversion to image

Classes from System.Drawing.Printing namespace work well in Windows Forms and WPF applications.
But, there are cases when you can't or shouldn't use System.Drawing.Printing.

For example, you should not use System.Drawing.Printing in Windows services or ASP.NET
applications. System.Drawing.Printing might produce inconsistent results when printing on Linux
or macOS. And you cannot use System.Drawing.Printing in Eto.Forms or Avalonia applications.

In such cases, you need to convert PDF document to image first. This
C# sample shows how to save a PDF page as a PNG image or convert an entire PDF document to a
multipage TIFF:

using (var pdf = new PdfDocument(@"your_document.pdf"))
{
 PdfDrawOptions options = PdfDrawOptions.Create();
 options.HorizontalResolution = printerDpi;
 options.VerticalResolution = printerDpi;

 // save one page
 pdf.Pages[0].Save("page0.png", options);

 // save the whole document as multipage bitonal TIFF
 options.Compression = ImageCompressionOptions.CreateTiff().SetBitonal();
 pdf.SaveAsTiff("your_document.tiff", options);
}

Then, print images using an alternative printing framework or tool. Look at the Print PDF in
Eto.Forms demo application that shows how to print PDF documents without
System.Drawing.Printing.

Render PDF in C# and VB.NET

Displaying of PDF in your application is like printing. In ASP.NET, WPF, Eto.Forms, Avalonia, or
any other application type, convert PDF to image and then display the
image.

In a Windows Forms app, you can draw a PDF page on a System.Drawing.Graphics context from any
control. Or you can convert a PDF page to a System.Drawing.Bitmap and then display the bitmap in
a PictureBox.

This sample shows how to convert PDF page to Bitmap in C#:

using (var pdf = new PdfDocument("render.pdf"))
{
 const float TargetResolution = 300;

 PdfPage page = pdf.Pages[0];
 double scaleFactor = TargetResolution / page.Resolution;

 using (var bitmap = new Bitmap((int)(page.Width * scaleFactor), (int)(page.Height * scaleFactor)))
 {
 bitmap.SetResolution(TargetResolution, TargetResolution);

 using (Graphics gr = Graphics.FromImage(bitmap))
 page.Draw(gr);

 bitmap.Save("result.png");
 }
}

The above code requires you to add BitMiracle.Docotic.Pdf.Gdi extension DLL
to your project.

Create PDF viewer or PDF editor in .NET application

Docotic.Pdf allows you to get detailed information about every object on a PDF page. You can
extract text chunks, images, vector paths, form controls, and annotations from a PDF page.

Then in your application, you can render all the extracted objects. You can also implement the
ability to select and edit the rendered objects.

Look at the Extract text, images, and paths from PDF sample. It shows
how to extract and draw page objects to System.Drawing.Graphics context.

You can also extract text objects as vector paths. Use
PdfPage.GetObjects(PdfObjectExtractionOptions) overload for that.

Conclusion

Use Docotic.Pdf library to display and print PDF documents in your .NET projects.
Look at related C# and VB.NET samples:

	Print PDF
	Draw PDF page on Graphics
	Extract text, images, and paths from PDF

Contact us if you have questions about PDF printing or rendering.

Related resources

	Convert PDF to image in C# and VB.NET article
	Render and print PDF samples

 Getting started |
 Documentation |
 Version history

 Popular features:

 HTML to PDF

 PDF to image

 Passwords

 Create PDF

 PDF to text

 Compress PDF

 Digital signatures

 OCR PDF

 Subscribe to RSS feed

 Privacy policy |
 GDPR notice |
 Terms of service

 Copyright © 2008 - 2024 Bit Miracle. All Rights Reserved.

