

 English

 Toggle navigation

 	Docotic.Pdf
	Download
	Help
	Pricing
	Blog
	Support
	About us

	Bit Miracle
	Docotic.Pdf
	Features
	HTML to PDF

Convert HTML to PDF in C# and VB.NET

If a lot of your time and money already spent on creating content in HTML form, you might want to
create PDFs from that HTML. Such an approach is a natural direction for everyone, who wants to
avoid duplicate work.

For successful reuse of investments, the conversion should be performed programmatically and the
resulting PDF should be as close visually to the source HTML as possible.

API for HTML to PDF conversion in .NET applications

Free HTML to PDF add-on for Docotic.Pdf library provides an API for such conversions. Both the
add-on and the library can be used from web and desktop applications built for .NET and .NET Core
frameworks.

The add-on is an HTML to PDF .NET library that uses Chromium during conversion. Before each
conversion, the add-on automatically checks if the most recent supported Chromium is already
downloaded. Any already downloaded eligible version will be reused. If no eligible version is
found, the add-on downloads one before the conversion. It is expected to have the same web
standards compliance as in Google Chrome (R).

The add-on can generate PDF from HTML in Windows, macOS, and Linux environments. Read how to
configure the add-on in Linux in the article about HTML to PDF conversion in Azure.

The add-on is available on NuGet, and it is also included in the
zip with binaries of the library. To try the library without evaluation mode
restrictions, you may get the free time-limited license key here.

Simple HTML to PDF C# conversion

Using the HTML to PDF API, the C#
conversion code can look like this:

static async Task convertUrlToPdfAsync(string urlString, string pdfFileName)
{
 using (var converter = await HtmlConverter.CreateAsync())
 {
 using (var pdf = await converter.CreatePdfAsync(new Uri(urlString)))
 pdf.Save(pdfFileName);
 }
}

It is rather simple. Only two calls are required to produce a PDF document. As you can see, the API
is asynchronous and does not provide synchronous methods at all.

In cases when you would like to call the API from some synchronous code, you can use the following
wrapper:

Task.Run(async () =>
{
 await convertUrlToPdfAsync("https://bitmiracle.com/", "output.pdf");
}).GetAwaiter().GetResult();

Please note that in general it is not recommended to call async methods synchronously, so use the
wrapper only when you have no other choice.

We provide sample code that shows how to use the API from both synchronous and asynchronous
console applications. Also, there are sample codes for Windows
Forms and WPF applications.

There is also the HTML to PDF group of samples. Each sample comes in C# and
VB.NET version.

Create a PDF with an HTML string or file in C# and VB.NET

It's easy to convert an HTML string to PDF with the API. The string can contain a complete HTML
document or just a fragment. The converter will create a PDF from the HTML code for you.

var html = "<body>

<h1>Hello, World<h1></body>";
using (var pdf = await converter.CreatePdfFromStringAsync(html))
 pdf.Save("output.pdf");

You can specify a base URL for all the relative links in the HTML code you are going to convert.
Here is a code snippet for how to convert HTML to PDF with a base URL in C#.

var incompleteHtml = "";
var options = new HtmlConversionOptions();
options.Load.BaseUri = new Uri("https://bitmiracle.com/");
using (var pdf = await converter.CreatePdfFromStringAsync(incompleteHtml, options))
 pdf.Save("output.pdf");

Converting an HTML file is almost the same as converting an URL. Just use the CreatePdfAsync
overload that accepts a path instead of an URL. The base URL and other options are also supported
when converting an HTML file to PDF in C# or VB.NET code.

var sampleHtmlPath = @"C:\path\to\sample.html";
using (var pdf = await converter.CreatePdfAsync(sampleHtmlPath))
 pdf.Save("output.pdf");

You can also convert SVG images to PDF using the API.

Use custom page size, margins, and scale

You can set up any HTML to PDF C# conversion by providing conversion options to PDF creating
methods.

Here is a code snippet that shows how to configure the output page size, margins, and scale in C#:

using (var converter = await HtmlConverter.CreateAsync())
{
 var options = new HtmlConversionOptions();

 // you can also specify if the page orientation should be landscape
 // and you can provide a size in points or inches
 options.Page.SetSize(PdfPaperSize.ItalyEnvelope);

 options.Page.MarginLeft = 10;
 options.Page.MarginTop = 20;
 options.Page.MarginRight = 30;
 options.Page.MarginBottom = 40;

 options.Page.Scale = 1.5;

 using (var pdf = await converter.CreatePdfAsync(url, options))
 pdf.Save("output.pdf");
}

Specify header and footer templates

You can specify header and footer templates using page options. The templates use regular HTML code
with support for a few variables. These variables are date, title, url, pageNumber and
totalPages.

It is recommended to use inline styles and Data URIs for images.

You might want to specify top and bottom margins for the page. Without margins, the header or the
footer may be obscured by the page contents.

The Convert HTML to PDF with header and footer in C# or VB.NET
sample code shows how to use the variables and Data URIs in the templates.

Password-protected HTML to PDF C# conversion

You can create PDF even if an HTML page is protected by a username/password pair. It's as easy as
setting the authentication options inside the HtmlConversionOptions.

var options = new HtmlConversionOptions();
options.Authentication.SetCredentials("foo", "bar");

using (var pdf = await converter.CreatePdfAsync(url, options))
 pdf.Save("output.pdf");

It is also easy if the page needs some cookies set to function properly. Just add those cookies to
the options. Here is how:

var options = new HtmlConversionOptions();
options.Cookies.Add(new Cookie("sessionID", "my-session-ID"));

using (var pdf = await converter.CreatePdfAsync(url, options))
 pdf.Save("output.pdf");

Delay conversion start

By default, the conversion starts immediately after loading. But there are cases when the page
needs some time to settle. For example, when it performs some calculations and updates the contents
after those calculations are ready.

Using the conversion start options you can delay the conversion for a specified number of
milliseconds.

// Wait for 10 seconds before starting the conversion.
var options = new HtmlConversionOptions();
options.Start.SetStartAfterDelay(10 * 1000);

Sometimes it is required to run a script to toggle elements on the loaded page, or to make dynamic
content loading happen. This is also possible:

var options = new HtmlConversionOptions();
var js = @"
 async function scrollDownUntilYouCantAnyMore() {
 await new Promise((resolve, reject) => {
 // omitted for brevity
 }, 400);
 });
 }
 scrollDownUntilYouCantAnyMore();
";
options.Start.SetStartAfterScriptRun(js);
using (var pdf = await converter.CreatePdfAsync(url, options))
 pdf.Save("output.pdf");

The HTML to PDF after a script run in C# or VB.NET sample code
contains the full scrollDownUntilYouCantAnyMore function. The sample shows how to execute a
script before HTML to PDF conversions.

Convert HTML to PDF in .NET ignoring SSL errors

During a conversion, an SSL error can happen. Such errors usually happen because of self-signed or
otherwise untrusted certificates. Revoked and expired certificates can cause the HTML to PDF
converter to throw exceptions, too.

You can ignore SSL errors if you understand why they happen and you are sure it is safe to ignore
them. To ignore SSL errors during an HTML to PDF conversion, use the engine options
with IgnoreSslErrors = true.

var engineOptions = new HtmlEngineOptions
{
 IgnoreSslErrors = true
};
using (var converter = await HtmlConverter.CreateAsync(engineOptions))
{
 var url = new Uri("https://self-signed.badssl.com/");
 using (var pdf = await converter.CreatePdfAsync(url))
 pdf.Save("output.pdf");
}

Put HTML content over PDF pages

There are cases when you might need to convert HTML and put the conversion result on top of some
existing PDF pages. For example, when you have a picture of a form, you might want to put something
over empty areas in that picture. The result will look like a filled form.

To put converted HTML over existing PDF content, you will need to:

	create PDF pages with transparent background from the HTML
	create XObjects from the converted pages
	draw those XObjects on existing PDF pages.

The Convert HTML and put it over existing PDF content in C# or VB.NET sample
code shows all the steps. Please take a look at the sample.

Related resources

	Samples for conversion of HTML to PDF documents
	HTML to PDF API documentation
	Convert HTML to PDF in Azure
	Sign PDF documents in C# and VB.NET
	Encrypt PDF documents in C# and VB.NET

 Getting started |
 Documentation |
 Version history

 Popular features:

 HTML to PDF

 PDF to image

 Passwords

 Create PDF

 PDF to text

 Compress PDF

 Digital signatures

 OCR PDF

 Subscribe to RSS feed

 Privacy policy |
 GDPR notice |
 Terms of service

 Copyright © 2008 - 2024 Bit Miracle. All Rights Reserved.

