

 English

 Toggle navigation

 	Docotic.Pdf
	Download
	Help
	Pricing
	Blog
	Support
	About us

	Bit Miracle
	Docotic.Pdf
	Features
	Passwords

Encrypt PDF documents in C# and VB.NET

With help of Docotic.Pdf library, you can encrypt PDF documents with either passwords or
certificates.

The library encrypts protected documents using an encryption algorithm of your choice. The library
supports RC4 40-bit, RC4 128-bit, AES 128-bit, and AES 256-bit encryption algorithms. You decide
what permissions you want to grant to users of protected PDF files.

Protect PDF with passwords

Password-protected PDF documents have an owner and, optionally, user passwords. All PDF permissions
are granted when someone opens a password-protected PDF file with the owner password. If a PDF
document is opened with the user password or without a password at all, only "user" permissions are
granted. For example, the author of the encrypted PDF file can disallow printing for "users" but
the "owner" will still be able to print the document.

To produce a password-protected PDF document, create an instance of PdfStandardEncryptionHandler
class and set it up as needed. Then assign the object to the EncryptionHandler
property in the document save options. The library will use the handler to encrypt the PDF document
while saving it.

The following code snippet shows how to create a password-protected PDF file in C#:

using (PdfDocument document = ...)
{
 var handler = new PdfStandardEncryptionHandler("owner", "user");
 handler.UserPermissions.Flags = PdfPermissionFlags.ModifyContents;

 var saveOptions = new PdfSaveOptions { EncryptionHandler = handler };
 document.Save(outputFileName, saveOptions);
}

The code above uses owner for the owner password and user for the user password. PDF viewers
will require a password to open the secured PDF file. This is because the user password is not
null or an empty string.

If you want to have a secured PDF file but would like to allow anyone to open it without a
password, then use null or an empty string for the user password.

Protect PDF with certificates in .NET

Any certificate-protected PDF document has a collection of recipients. The collection can contain
any number of items. Each recipient describes a certificate that can be used to decrypt the
secured PDF document. For each recipient, there are PDF access permissions specified. The
permissions granted for the decrypted PDF document depend on the certificate used to unprotect the
document.

Some access permissions allow all operations with the decrypted PDF file. Recipients with such
permissions we call owners in Docotic.Pdf library. Regular recipients have limited permissions for
the decrypted PDF document.

To create a certificate-protected document, start with creating an instance of
PdfPublicKeyEncryptionHandler class. Constructors
without a permissions parameter create an object with an owner recipient. Use constructors with the
permissions parameter to get an encryption handler with a regular recipient.

You can add more owner recipients using AddOwner
methods. Use AddRecipient methods to
add regular recipients. You can add as many owners and regular recipients to the encryption
handler, as needed.

Then instruct the library to use the handler while saving the document. For this, assign the object
to the EncryptionHandler property in the
document save options.

The following code shows how to create a certificate-protected PDF file in C#. The code prepares a
handler with an owner and regular recipients. In both cases, certificates for the recipients are
taken from the provided key stores.

using (PdfDocument document = ...)
{
 var handler = new PdfPublicKeyEncryptionHandler("owner-key-store.p12", "password");

 var permissions = new PdfPermissions();
 permissions.Flags = PdfPermissionFlags.FillFormFields | PdfPermissionFlags.PrintDocument;
 handler.AddRecipient("recipient-key-store.p12", "password", permissions);

 var saveOptions = new PdfSaveOptions { EncryptionHandler = handler };
 document.Save(outputFileName, saveOptions);
}

Restrict editing of a PDF file

When encrypting a PDF document, it is required to set up permissions for users of the file. In
other words, you must specify PDF permission to grant for the document opened with a user password
or a certificate matching a regular recipient.

Docotic.Pdf library provides PdfPermissions class for user
permissions. This class provides two ways to set up permissions. You can set up all permissions at
once using the Flags property. The alternative is to use individual properties for each possible
permission.

When creating a PdfStandardEncryptionHandler object, use the UserPermissions
property to access the permissions. With a PdfPublicKeyEncryptionHandler object, use the
PdfPermissions constructor. The rest of the setup is the same.

The following code shows how to setup PDF permissions in C#:

// By default, permissions objects allow everything.

// You can use the Flags property to grant only specific permissions.
var permisssions1 = new PdfPermissions();
permisssions1.Flags = PdfPermissionFlags.FillFormFields | PdfPermissionFlags.ModifyAnnotations;

// Or you can disable only those permissions you would like to deny.
var permisssions2 = new PdfPermissions();
permisssions2.AssembleDocument = false;
permisssions2.CopyContents = false;
permisssions2.ExtractContents = false;
permisssions2.ModifyContents = false;
permisssions2.PrintDocument = false;
permisssions2.PrintFaithfulCopy = false;

// Or you can disable all permissions first and then enable only those
// permissions you would like to allow.
var permisssions3 = new PdfPermissions();
permisssions3.AllowEverything = false;
permisssions3.FillFormFields = true;
permisssions3.ModifyAnnotations = true;

// The permisssions1, permisssions2, and permisssions3 objects describe
// the same permissions at this point.

Encrypt PDF using AES-256 in .NET

Docotic.Pdf can encrypt PDF documents with AES-256. This encryption algorithm is the strongest
supported by the library. Please note that not every PDF reader might support the algorithm.

After you created a PdfStandardEncryptionHandler or PdfPublicKeyEncryptionHandler object, use
the Algorithm property to set up the encryption
algorithm.

The following C# code shows how to protect a PDF document with passwords and encrypt it using
AES-256:

using (var pdf = new PdfDocument())
{
 //

 var handler = new PdfStandardEncryptionHandler("owner", "user");
 handler.Algorithm = PdfEncryptionAlgorithm.Aes256Bit;

 var saveOptions = new PdfSaveOptions { EncryptionHandler = handler };
 pdf.Save("encrypted", saveOptions);
}

Encryption and PDF/A

It is not allowed to encrypt PDF/A files. The library throws an exception of PdfException type
when you try to set up an encryption handler and turn on the option to produce PDF/A in a document
save options.

PDF/A in a Nutshell
has advice on how to secure PDF/A files:

 Users who wish to protect their PDF/A files must protect the storage location of these files.
This can be achieved by implementing password protection for a folder or drive, for example.

Related resources

	Decrypt PDF documents in C# and VB.NET
	Samples for PDF encryption and protection

 Getting started |
 Documentation |
 Version history

 Popular features:

 HTML to PDF

 PDF to image

 Passwords

 Create PDF

 PDF to text

 Compress PDF

 Digital signatures

 OCR PDF

 Subscribe to RSS feed

 Privacy policy |
 GDPR notice |
 Terms of service

 Copyright © 2008 - 2024 Bit Miracle. All Rights Reserved.

